We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.
translated by 谷歌翻译
随着深度学习在关键任务系统中的越来越多的应用,越来越需要对神经网络的行为进行正式保证。确实,最近提出了许多用于验证神经网络的方法,但是这些方法通常以有限的可伸缩性或不足的精度而挣扎。许多最先进的验证方案中的关键组成部分是在网络中可以为特定输入域获得的神经元获得的值计算下限和上限 - 并且这些界限更紧密,验证的可能性越大,验证的可能性就越大。成功。计算这些边界的许多常见算法是符号结合传播方法的变化。其中,利用一种称为后替代的过程的方法特别成功。在本文中,我们提出了一种使背部替代产生更严格的界限的方法。为了实现这一目标,我们制定并最大程度地减少背部固定过程中发生的不精确错误。我们的技术是一般的,从某种意义上说,它可以将其集成到许多现有的符号结合的传播技术中,并且只有较小的修改。我们将方法作为概念验证工具实施,并且与执行背部替代的最先进的验证者相比,取得了有利的结果。
translated by 谷歌翻译
我们考虑了认证深神经网络对现实分布变化的鲁棒性的问题。为此,我们通过提出一个新型的神经符号验证框架来弥合手工制作的规格和现实部署设置之间的差距模型。这种环境引起的一个独特的挑战是,现有的验证者不能紧密地近似sigmoid激活,这对于许多最新的生成模型至关重要。为了应对这一挑战,我们提出了一个通用的元算象来处理乙状结肠激活,该乙状结激素利用反示例引导的抽象细化的经典概念。关键思想是“懒惰地”完善Sigmoid函数的抽象,以排除先前抽象中发现的虚假反示例,从而确保验证过程中的进展,同时保持状态空间较小。 MNIST和CIFAR-10数据集的实验表明,我们的框架在一系列具有挑战性的分配变化方面大大优于现有方法。
translated by 谷歌翻译
深度神经网络(DNN)越来越多地用于安全至关重要的系统中,迫切需要保证其正确性。因此,验证社区设计了多种技术和工具来验证DNN。当DNN验证者发现触发错误的输入时,很容易确认;但是,当他们报告不存在错误时,就无法确保验证工具本身没有缺陷。由于在DNN验证工具中已经观察到了多个错误,因此这将DNN验证的适用性提出了质疑。在这项工作中,我们提出了一种具有证明生产能力的基于简单的DNN验证符的新型机制:产生易于检查的不可满足性的见证人,这证明了没有错误的情况。我们的证明生产是基于众所周知的Farkas引理的有效适应,并结合了处理分段线性函数和数值精确误差的机制。作为概念的证明,我们在Marabou DNN验证者之上实施了我们的技术。我们对避免空中碰撞的安全至关重要系统的评估表明,在几乎所有情况下,证明生产都成功了,只需要最小的开销。
translated by 谷歌翻译
最近,图形神经网络(GNN)已应用于群集上的调整工作,比手工制作的启发式方法更好地表现了。尽管表现令人印象深刻,但仍然担心这些基于GNN的工作调度程序是否满足用户对其他重要属性的期望,例如防止策略,共享激励和稳定性。在这项工作中,我们考虑对基于GNN的工作调度程序的正式验证。我们解决了几个特定领域的挑战,例如网络,这些挑战比验证图像和NLP分类器时遇到的更深层和规格更丰富。我们开发了拉斯维加斯,这是基于精心设计的算法,将这些调度程序的单步和多步属性验证的第一个通用框架,它们结合了抽象,改进,求解器和证明传输。我们的实验结果表明,与以前的方法相比,维加斯在验证基于GNN的调度程序的重要特性时会达到显着加速。
translated by 谷歌翻译
由于它们在计算机视觉,图像处理和其他人领域的优异性能,卷积神经网络具有极大的普及。不幸的是,现在众所周知,卷积网络通常产生错误的结果 - 例如,这些网络的输入的小扰动可能导致严重的分类错误。近年来提出了许多验证方法,以证明没有此类错误,但这些通常用于完全连接的网络,并且在应用于卷积网络时遭受加剧的可扩展性问题。为了解决这一差距,我们在这里介绍了CNN-ABS框架,特别是旨在验证卷积网络。 CNN-ABS的核心是一种抽象细化技术,它通过拆除卷积连接,以便在这种方式创造原始问题的过度逼近来简化验证问题;如果产生的问题变得过于抽象,它会恢复这些连接。 CNN-ABS旨在使用现有的验证引擎作为后端,我们的评估表明它可以显着提高最先进的DNN验证引擎的性能,平均降低运行时间15.7%。
translated by 谷歌翻译
Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU ) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.
translated by 谷歌翻译
A Digital Twin (DT) is a simulation of a physical system that provides information to make decisions that add economic, social or commercial value. The behaviour of a physical system changes over time, a DT must therefore be continually updated with data from the physical systems to reflect its changing behaviour. For resource-constrained systems, updating a DT is non-trivial because of challenges such as on-board learning and the off-board data transfer. This paper presents a framework for updating data-driven DTs of resource-constrained systems geared towards system health monitoring. The proposed solution consists of: (1) an on-board system running a light-weight DT allowing the prioritisation and parsimonious transfer of data generated by the physical system; and (2) off-board robust updating of the DT and detection of anomalous behaviours. Two case studies are considered using a production gas turbine engine system to demonstrate the digital representation accuracy for real-world, time-varying physical systems.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in $N$ languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks.
translated by 谷歌翻译